
Figure 3.35 The subtraction of the two vectors shown in Figure 3.30. The components of are the negatives of the components of . The

method of subtraction is the same as that for addition.

PHET EXPLORATIONS

Vector Addition
Learn how to add vectors. Drag vectors onto a graph, change their length and angle, and sum them together. The magnitude,
angle, and components of each vector can be displayed in several formats.

Click to view content (https://phet.colorado.edu/sims/vector-addition/vector-addition_en.html)

3.4 Projectile Motion
Projectile motion is the motion of an object thrown or projected into the air, subject to only the acceleration of gravity. The
object is called a projectile, and its path is called its trajectory. The motion of falling objects, as covered in Problem-Solving
Basics for One-Dimensional Kinematics, is a simple one-dimensional type of projectile motion in which there is no horizontal
movement. In this section, we consider two-dimensional projectile motion, such as that of a football or other object for which
air resistance is negligible.

The most important fact to remember here is that motions along perpendicular axes are independent and thus can be analyzed
separately. This fact was discussed in Kinematics in Two Dimensions: An Introduction, where vertical and horizontal motions
were seen to be independent. The key to analyzing two-dimensional projectile motion is to break it into two motions, one along
the horizontal axis and the other along the vertical. (This choice of axes is the most sensible, because acceleration due to gravity
is vertical—thus, there will be no acceleration along the horizontal axis when air resistance is negligible.) As is customary, we
call the horizontal axis the x-axis and the vertical axis the y-axis. Figure 3.36 illustrates the notation for displacement, where is
defined to be the total displacement and and are its components along the horizontal and vertical axes, respectively. The
magnitudes of these vectors are s, x, and y. (Note that in the last section we used the notation to represent a vector with
components and . If we continued this format, we would call displacement with components and . However, to
simplify the notation, we will simply represent the component vectors as and .)

Of course, to describe motion we must deal with velocity and acceleration, as well as with displacement. We must find their
components along the x- and y-axes, too. We will assume all forces except gravity (such as air resistance and friction, for
example) are negligible. The components of acceleration are then very simple: . (Note that this
definition assumes that the upwards direction is defined as the positive direction. If you arrange the coordinate system instead
such that the downwards direction is positive, then acceleration due to gravity takes a positive value.) Because gravity is vertical,

. Both accelerations are constant, so the kinematic equations can be used.

Review of Kinematic Equations (constant )
3.28
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Figure 3.36 The total displacement of a soccer ball at a point along its path. The vector has components and along the horizontal and

vertical axes. Its magnitude is , and it makes an angle with the horizontal.

Given these assumptions, the following steps are then used to analyze projectile motion:

Step 1. Resolve or break the motion into horizontal and vertical components along the x- and y-axes. These axes are
perpendicular, so and are used. The magnitude of the components of displacement along these
axes are and The magnitudes of the components of the velocity are and where is the
magnitude of the velocity and is its direction, as shown in Figure 3.37. Initial values are denoted with a subscript 0, as usual.

Step 2. Treat the motion as two independent one-dimensional motions, one horizontal and the other vertical. The kinematic
equations for horizontal and vertical motion take the following forms:

Step 3. Solve for the unknowns in the two separate motions—one horizontal and one vertical. Note that the only common
variable between the motions is time . The problem solving procedures here are the same as for one-dimensional kinematics
and are illustrated in the solved examples below.

Step 4. Recombine the two motions to find the total displacement and velocity . Because the x - and y -motions are
perpendicular, we determine these vectors by using the techniques outlined in the Vector Addition and Subtraction: Analytical
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Methods and employing and in the following form, where is the direction of the

displacement and is the direction of the velocity :

Total displacement and velocity

Figure 3.37 (a) We analyze two-dimensional projectile motion by breaking it into two independent one-dimensional motions along the

vertical and horizontal axes. (b) The horizontal motion is simple, because and is thus constant. (c) The velocity in the vertical

direction begins to decrease as the object rises; at its highest point, the vertical velocity is zero. As the object falls towards the Earth again,

the vertical velocity increases again in magnitude but points in the opposite direction to the initial vertical velocity. (d) The x - and y

-motions are recombined to give the total velocity at any given point on the trajectory.
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EXAMPLE 3.4

A Fireworks Projectile Explodes High and Away
During a fireworks display, a shell is shot into the air with an initial speed of 70.0 m/s at an angle of above the horizontal,
as illustrated in Figure 3.38. The fuse is timed to ignite the shell just as it reaches its highest point above the ground. (a) Calculate
the height at which the shell explodes. (b) How much time passed between the launch of the shell and the explosion? (c) What is
the horizontal displacement of the shell when it explodes?

Strategy

Because air resistance is negligible for the unexploded shell, the analysis method outlined above can be used. The motion can be
broken into horizontal and vertical motions in which and . We can then define and to be zero and solve
for the desired quantities.

Solution for (a)

By “height” we mean the altitude or vertical position above the starting point. The highest point in any trajectory, called the
apex, is reached when . Since we know the initial and final velocities as well as the initial position, we use the following
equation to find :

Figure 3.38 The trajectory of a fireworks shell. The fuse is set to explode the shell at the highest point in its trajectory, which is found to be

at a height of 233 m and 125 m away horizontally.

Because and are both zero, the equation simplifies to

Solving for gives

Now we must find , the component of the initial velocity in the y-direction. It is given by , where is the
initial velocity of 70.0 m/s, and is the initial angle. Thus,

and is
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so that

Discussion for (a)

Note that because up is positive, the initial velocity is positive, as is the maximum height, but the acceleration due to gravity is
negative. Note also that the maximum height depends only on the vertical component of the initial velocity, so that any
projectile with a 67.6 m/s initial vertical component of velocity will reach a maximum height of 233 m (neglecting air resistance).
The numbers in this example are reasonable for large fireworks displays, the shells of which do reach such heights before
exploding. In practice, air resistance is not completely negligible, and so the initial velocity would have to be somewhat larger
than that given to reach the same height.

Solution for (b)

As in many physics problems, there is more than one way to solve for the time to the highest point. In this case, the easiest
method is to use . Because is zero, this equation reduces to simply

Note that the final vertical velocity, , at the highest point is zero. Thus,

Discussion for (b)

This time is also reasonable for large fireworks. When you are able to see the launch of fireworks, you will notice several seconds
pass before the shell explodes. (Another way of finding the time is by using , and solving the quadratic
equation for .)

Solution for (c)

Because air resistance is negligible, and the horizontal velocity is constant, as discussed above. The horizontal
displacement is horizontal velocity multiplied by time as given by , where is equal to zero:

where is the x-component of the velocity, which is given by Now,

The time for both motions is the same, and so is

Discussion for (c)

The horizontal motion is a constant velocity in the absence of air resistance. The horizontal displacement found here could be
useful in keeping the fireworks fragments from falling on spectators. Once the shell explodes, air resistance has a major effect,
and many fragments will land directly below.

In solving part (a) of the preceding example, the expression we found for is valid for any projectile motion where air resistance
is negligible. Call the maximum height ; then,

This equation defines the maximum height of a projectile and depends only on the vertical component of the initial velocity.
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EXAMPLE 3.5

Calculating Projectile Motion: Hot Rock Projectile
Kilauea in Hawaii is the world’s most continuously active volcano. Very active volcanoes characteristically eject red-hot rocks
and lava rather than smoke and ash. Suppose a large rock is ejected from the volcano with a speed of 25.0 m/s and at an angle

above the horizontal, as shown in Figure 3.39. The rock strikes the side of the volcano at an altitude 20.0 m lower than its
starting point. (a) Calculate the time it takes the rock to follow this path. (b) What are the magnitude and direction of the rock’s
velocity at impact?

Figure 3.39 The trajectory of a rock ejected from the Kilauea volcano.

Strategy

Again, resolving this two-dimensional motion into two independent one-dimensional motions will allow us to solve for the
desired quantities. The time a projectile is in the air is governed by its vertical motion alone. We will solve for first. While the
rock is rising and falling vertically, the horizontal motion continues at a constant velocity. This example asks for the final
velocity. Thus, the vertical and horizontal results will be recombined to obtain and at the final time determined in the first
part of the example.

Solution for (a)

While the rock is in the air, it rises and then falls to a final position 20.0 m lower than its starting altitude. We can find the time
for this by using

If we take the initial position to be zero, then the final position is Now the initial vertical velocity is the
vertical component of the initial velocity, found from = ( )( ) = . Substituting
known values yields

Defining a Coordinate System
It is important to set up a coordinate system when analyzing projectile motion. One part of defining the coordinate system
is to define an origin for the and positions. Often, it is convenient to choose the initial position of the object as the origin
such that and . It is also important to define the positive and negative directions in the and directions.
Typically, we define the positive vertical direction as upwards, and the positive horizontal direction is usually the direction
of the object’s motion. When this is the case, the vertical acceleration, , takes a negative value (since it is directed
downwards towards the Earth). However, it is occasionally useful to define the coordinates differently. For example, if you
are analyzing the motion of a ball thrown downwards from the top of a cliff, it may make sense to define the positive
direction downwards since the motion of the ball is solely in the downwards direction. If this is the case, takes a positive
value.
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Rearranging terms gives a quadratic equation in :

This expression is a quadratic equation of the form , where the constants are , , and
Its solutions are given by the quadratic formula:

This equation yields two solutions: and . (It is left as an exercise for the reader to verify these solutions.) The
time is or . The negative value of time implies an event before the start of motion, and so we discard it.
Thus,

Discussion for (a)

The time for projectile motion is completely determined by the vertical motion. So any projectile that has an initial vertical
velocity of 14.3 m/s and lands 20.0 m below its starting altitude will spend 3.96 s in the air.

Solution for (b)

From the information now in hand, we can find the final horizontal and vertical velocities and and combine them to find
the total velocity and the angle it makes with the horizontal. Of course, is constant so we can solve for it at any horizontal
location. In this case, we chose the starting point since we know both the initial velocity and initial angle. Therefore:

The final vertical velocity is given by the following equation:

where was found in part (a) to be . Thus,

so that

To find the magnitude of the final velocity we combine its perpendicular components, using the following equation:

which gives

The direction is found from the equation:

so that

Thus,

Discussion for (b)

The negative angle means that the velocity is below the horizontal. This result is consistent with the fact that the final
vertical velocity is negative and hence downward—as you would expect because the final altitude is 20.0 m lower than the initial
altitude. (See Figure 3.39.)
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One of the most important things illustrated by projectile motion is that vertical and horizontal motions are independent of
each other. Galileo was the first person to fully comprehend this characteristic. He used it to predict the range of a projectile. On
level ground, we define range to be the horizontal distance traveled by a projectile. Galileo and many others were interested in
the range of projectiles primarily for military purposes—such as aiming cannons. However, investigating the range of
projectiles can shed light on other interesting phenomena, such as the orbits of satellites around the Earth. Let us consider
projectile range further.

Figure 3.40 Trajectories of projectiles on level ground. (a) The greater the initial speed , the greater the range for a given initial angle. (b)

The effect of initial angle on the range of a projectile with a given initial speed. Note that the range is the same for and , although

the maximum heights of those paths are different.

How does the initial velocity of a projectile affect its range? Obviously, the greater the initial speed , the greater the range, as
shown in Figure 3.40(a). The initial angle also has a dramatic effect on the range, as illustrated in Figure 3.40(b). For a fixed
initial speed, such as might be produced by a cannon, the maximum range is obtained with . This is true only for
conditions neglecting air resistance. If air resistance is considered, the maximum angle is approximately . Interestingly, for
every initial angle except , there are two angles that give the same range—the sum of those angles is . The range also
depends on the value of the acceleration of gravity . The lunar astronaut Alan Shepherd was able to drive a golf ball a great
distance on the Moon because gravity is weaker there. The range of a projectile on level ground for which air resistance is
negligible is given by

where is the initial speed and is the initial angle relative to the horizontal. The proof of this equation is left as an end-of-
chapter problem (hints are given), but it does fit the major features of projectile range as described.

When we speak of the range of a projectile on level ground, we assume that is very small compared with the circumference of
the Earth. If, however, the range is large, the Earth curves away below the projectile and acceleration of gravity changes
direction along the path. The range is larger than predicted by the range equation given above because the projectile has farther
to fall than it would on level ground. (See Figure 3.41.) If the initial speed is great enough, the projectile goes into orbit. This
possibility was recognized centuries before it could be accomplished. When an object is in orbit, the Earth curves away from
underneath the object at the same rate as it falls. The object thus falls continuously but never hits the surface. These and other
aspects of orbital motion, such as the rotation of the Earth, will be covered analytically and in greater depth later in this text.

Once again we see that thinking about one topic, such as the range of a projectile, can lead us to others, such as the Earth orbits.
In Addition of Velocities, we will examine the addition of velocities, which is another important aspect of two-dimensional
kinematics and will also yield insights beyond the immediate topic.
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Figure 3.41 Projectile to satellite. In each case shown here, a projectile is launched from a very high tower to avoid air resistance. With

increasing initial speed, the range increases and becomes longer than it would be on level ground because the Earth curves away

underneath its path. With a large enough initial speed, orbit is achieved.

PHET EXPLORATIONS

Projectile Motion
Blast a Buick out of a cannon! Learn about projectile motion by firing various objects. Set the angle, initial speed, and mass. Add
air resistance. Make a game out of this simulation by trying to hit a target.

Click to view content (https://phet.colorado.edu/sims/projectile-motion/projectile-motion_en.html)

Figure 3.42

3.5 Addition of Velocities
Relative Velocity
If a person rows a boat across a rapidly flowing river and tries to head directly for the other shore, the boat instead moves
diagonally relative to the shore, as in Figure 3.43. The boat does not move in the direction in which it is pointed. The reason, of
course, is that the river carries the boat downstream. Similarly, if a small airplane flies overhead in a strong crosswind, you can
sometimes see that the plane is not moving in the direction in which it is pointed, as illustrated in Figure 3.44. The plane is
moving straight ahead relative to the air, but the movement of the air mass relative to the ground carries it sideways.

Figure 3.43 A boat trying to head straight across a river will actually move diagonally relative to the shore as shown. Its total velocity (solid
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